

Metal-assisted chemical Etching Wet Etch, Dry Etch, and now MacEtch Not your ordinary etching

Xiuling Li

http://mocvd.ece.Illinois.edu

Electrical and Computer Engineering University of Illinois

Outline

- Background of MacEtch (Metal-assisted chemical Etching)
 – Forward MacEtch
 - Inverse MacEtch (I-MacEtch)
 - <u>Magnetic-field</u> MacEtch (h-MacEtch)
 - <u>Self-anchored-catalyst</u> (SAC-MacEtch)
 - Materials versatility and device applications
 - Si, Ge, GaAs, InGaAs, InP, Ga₂O_{3,} FET, PV, PD, etc.
- Summary

MacEtch BACKGROUND AND MECHANISM

http://mocvd.ece.illinois.edu

Wet Etch

http://fabweb.ece.illinois.edu

isotropic -

most wet etches are isotropic
i.e. they etch equally in all directions
isotropic etches result in <u>undercutting</u>

Radiur

Wet Etch

http://fabweb.ece.illinois.edu

rate determining steps - diffusion of reactants to the surface reaction rate at the surface desorption of reaction products

material removed

reaction equation reaction rate

 $mA + nB \rightarrow reaction products$

$$r = k[A]^m[B]^n e^{-\frac{E_A}{RT}}$$

Dry Etch

http://fabweb.ece.illinois.edu

- <u>Mechanism</u>:
 - Chemical:
 - plasma etch small degree of anisotropy
 - Physical:
 - sputtering, directional but no selectivity
- <u>Goal</u>:
 - enhance anisotropy
 - without losing selectivity
 - without causing damage
 - maintain controllable etch rate
- <u>Techniques</u>:

SAMCO

https://www.crystec.com/trietche.htm

Dry Etching Issues

<u>Metal-Assisted</u> <u>Chemical</u> <u>Etching</u> (MacEtch)

Scalable, high throughput, low cost

- Process Flow
 - Pattern metal
 - Immerse in HF/H_2O_2
 - Etching takes
 place underneath
 the metal
- Contrast with
 - wet vs dry etch
 - bottom-up growth

MacEtch: wet etch but directional

Si

Metal-Assisted Chemical Etching (MacEtch)

X. Li and P. W. Bohn, *Appl. Phys. Lett.* 77, 2572 (2000); ~893 citation.
Patents: 7 issued and 4+ pending

MacEtch mechanism

X. Li and P.W. Bohn, Appl. Phys. Lett.77, 2572 (2000).

Local electrochemical reaction

Cathode reaction (at metal): $H_2O_2 + 2H^+ \rightarrow 2H_2O+2h^+$ $2H^+ + 2e^- \rightarrow H_2 \uparrow$ Anode reaction (at Si):

Si + 4h⁺ + 4H₂O \longrightarrow SiO₂ + 4H⁺ SiO₂ + 6HF \longrightarrow H₂SiF₆ + 2H₂O

Overall reaction:

```
Si + H_2O_2 + 6HF \rightarrow 2H_2O + H_2SiF_6 + H_2 \uparrow
```


MacEtch CHARACTERISTICS

"Metal Assisted Chemical Etching for High Aspect Ratio Nanostructures: A Review of Characteristics and Applications in Photovoltaics," X. Li, Current Opinion in Solid State & Materials Science, invited review article, 16, 71-81 (2012).

"Metal-assisted chemical etching of silicon: a review," Huang Z, Geyer N, Werner P, de Boor J, Gosele U. Adv Mater 2011; 23(2):285–308.

http://mocvd.ece.illinois.edu

Extremely High Aspect Ratio

Si nanowire array: 550 nm diameter, 51 μm height

produced by Au-MacEtch in 20 mins

Nanotechnology, 23, 305304 (2012).

-**Scalability** -----15.0kV 9.7mm x350 100um

MacEtched Si NW PV cell

Shin et al. IEEE J. Photovoltaics, 2, 129 (2012).

Efficiency limited by surface area

It is all about the surfaces!

Shin et al. IEEE J. Photovoltaics, 2, 129 (2012).

High Aspect Ratio sub-micron vias

Etched the entire array over 100 µm x 100 µm patterned by EBL uniformly.
Via dimension: Diameter = ~ 100 - 600 nm, Spacing = ~80 - 1000 nm

JD Kim, et al. Adv. Func. Mater. 27, 1605614 (2017).

Large Through-Si-Via (TSV) by SAC-MacEtch

Etch rate model: effect of carrier generation and mass transport

• Parabolic vs via diameter

Peak shifts wrt [H₂O₂]

JD Kim, et al. Adv. Func. Mater. 27, 1605614 (2017).

poly Si: SAC-MacEtch

• 700 nm D and 1 µm pitch

• MacEtched in 0.32 $\rho_{H_2O_2}$ for 10 minutes

5 µm

Effect of crystallinity

Enhanced mass transport leads to shift of parabola peak

Poly-Si/SiO₂ SL MacEtch

GaAs p-i-n pillar based µ-LED by MacEtch

GaAs p-i-n Pillar Based LED by MacEtch

Mohseni et al., J. Appl. Phys. 114, 064909 (2013).

GaAs p-i-n pillar based μ -LED by MacEtch \mathbb{I}

- Pillar showed stronger emission at all injection levels
- Enhancement is stronger at higher I

Mohseni et al. J. Appl. Phys. 114, 064909 (2013).

Buried Plasmonics: Enhanced Optical Transmission

RCWA modeling and experimental results

Liu et al. Adv. Mater. 28, 1441–1448 (2016).

MacEtch SIDEWALL ROUGHNESS

Sidewall morphology and porosity

- Free of high energy ion induced damage
- <u>Sidewall smoothness</u> is determined by the edge roughness of the metal catalyst pattern
- Susceptible to porosity, which can be eliminated or minimized by tuning the MacEtch condition or combining with digital etch

Issues: sidewall roughness

Tuning of thermal properties by porosity using MacEtch

TE properties of rough Si NWs

MacEtch of In_xGa_{1-x}As

Kong et al. ACS Nano, 11 (10), pp 10193-10205 (2017).

MacEtch of $In_{0.53}Ga_{0.47}As$: porosity issue, solution, surface quality

Kong et al. ACS Nano, 11 (10), pp 10193-10205 (2017).

In_{0.53}Ga_{0.47}As-Al₂O₃ MOSCAP: planar vs pillar Interface charge density and hysteresis

The Schottky Barrier Model

SMOOTH SIDEWALLS BY INVERSE-MACETCH

Inverse-MacEtch

Inverse-MacEtch for smooth sidewalls

- Metal edge roughness no longer limits sidewall smoothness
- Limited aspect ratio (height/width) because of the inverse nature S. H. Kim, P. K. Mohseni, Y. Song, T. Ishihara, and <u>X. Li</u>, *Nano Lett.* 15 (1), pp 641–648 (2015).

I-MacEtch for InP FinFET

HAR InP Junctionless FinFET: X-section

Y. Song et al. IEEE Electron Dev. Lett. 37 (8), pp 970-973 (2016)

- L_{g, min} ~ 14 nm
- AR ~ 50:1
- Atomically smooth sidewalls
- Conformal gate dielectric and metal
- SS: 63 mV/dec

HAR InP Junctionless FinFET

Y. Song et al. IEEE Electron Dev. Lett. 37 (8), pp 970-973 (2016)

JL MOSFETs – excellent off-state and on-state performance

I-MacEtch for Ge

Kim et al. ACS Nano, 2018. 10.1021/acsnano.8b01848

Ge MSM PD enhanced by I-MacEtch

Kim et al. ACS Nano, 2018. 10.1021/acsnano.8b01848

- Smooth surface by i-MacEtch w in situ α-Ge passivation
- Reduced dark current due to higher SBH by α-Ge
- Enhanced photoresponsivity due to textured surfaces

Metal Pattern Formation and resolution

MacEtch has been realized using metal catalyst formed by the following techniques

- Electroless plating (e.g. from AgNO₃ solution)
- Colloidal nanoparticles
- Optical lithography
- Electron beam lithography
- Nanoimprint/soft lithography
- Superionic solid state stamping
- Nanosphere lithography
- High aspect ratio shadow mask
- Tip-based lithography (AFM, STM)

Examples of semiconductor nanostructures produced by MacEtch

10.0kV 18.9mm x10.0k

MacEtch vs wet and dry etch

	Wet Etch	Dry Etch	MacEtch
Directionality	Isotropic	Anisotropic	Anisotropic
Aspect Ratio	Low	Medium	High
Ion Induced Damage	None	Mild to Severe	None
Crystal-Orientation	Some	Weak	Weak
Dependence			
Etch Rate	Fast	Slow	Fast
Sidewall Smoothness	Smooth	Not Smooth	Smooth or Rough
Chemical Selectivity	Good	Poor	Depends
Cost	Low	High	Low

"Metal Assisted Chemical Etching for High Aspect Ratio Nanostructures: A Review of Characteristics and Applications in Photovoltaics," X. Li, Current Opinion in Solid State & Materials Science, 16, 71-81 (2012).

MacEtch - Not your ordinary etch

various electronics, photonics, energy, and

chemical and bio-sensing applications.

- Si Ge GaAs InGaAs AIGaAs InP GaN SiC Ga₂O₃ Single Poly Amorphous junctions
- MacEtch
- I-MacEtch
- H-MacEtch
- SAC-MacEtch

The Serendipity of MacEtch Discovery

Source: M. Sailor website

- The birth of metal-assisted chemical etch (MacEtch)
- X. Li and P. W. Bohn, *Appl. Phys. Lett.* 77, 2572 (2000); ~893 citation.

Metal

Si Wafer

Selected Publications on MacEtch from Illinois

http://mocvd.ece.illinois.edu

- "Nanoscale Groove Textured beta-Ga2O3 by Room Temperature Inverse Metal-assisted Chemical Etching and Photodiodes with Enhanced Responsivity," Appl. Phys. Lett. 113, 222104 (2018).
- "Enhanced performance of Ge photodiodes via monolithic antireflection texturing and α-Ge self-passivation by inverse metal-assisted chemical etching," ACS Nano, 12 (7), 6748-6755 (2018).
- "Self-Anchored Catalyst Interface Enables Ordered Via Array Formation from Sub-micron to millimeter Scale for Poly- and Single-Crystalline Silicon," ACS Appl. Mater. Interfaces, 10 (10), pp 9116-9122 (2018).
- "Damage-Free Smooth-Sidewall InGaAs Nanopillar Array by Metal-Assisted Chemical Etching," ACS Nano, 11 (10), pp 10193-10205 (2017).
- "Scaling the Aspect Ratio of Nanoscale Closely-Packed Silicon Vias by MacEtch: Kinetics of Carrier Generation and Mass Transport," Adv. Func. Mater. 27, 1605614 (2017).
- "Ultra-High Aspect Ratio InP Junctionless FinFETs by a Novel Wet Etching Method," IEEE Electron Dev. Lett. 37, 970 (2016).
- "Inverse Metal-Assisted Chemical Etching Produces Smooth High Aspect Ratio InP Nanostructures," Nano Lett. 15, 641 (2015).
- "Fabrication of Arbitrarily-Shaped Silicon and Silicon Oxide Nanostructures Using Tip-based Nanofabrication," J. Vac. Sci. Tech. B 31, 06FJ01 (2013).
- "Photonic crystal membrane reflectors by magnetic field-guided metal-assisted chemical etching," Appl. Phys. Lett. 103, 214103 (2013).
- "GaAs pillar array-based light emitting diode fabricated by metal-assisted chemical etching", J. Appl. Phys. 114, 064909 (2013).
- "Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching," Nanotech. 24, 225305 (2013).
- "Sub-100 nm Si nanowire and nano-sheet array formation by MacEtch using a non-lithographic InAs Nanowire Mask," *Nanotech*. 23, 305305 (2012).
- "Porosity control in metal assisted chemical etching of degenerately doped silicon," Nanotech. 23, 305304 (2012).
- "Metal Assisted Chemical Etching for High Aspect Ratio Nanostructures: A Review of Characteristics and Applications in Photovoltaics," Curr. Opin. Solid State Mater. Sci. invited review article, 16, 71 (2012).
- "Experimental Study of Design Parameters in Periodic Silicon Micropillar Array Solar Cells Produced by Soft Lithography and Metal Assisted Chemical Etching," *IEEE J. Photovoltaics* 2, 129 (2012).
- "Formation of High Aspect Ratio GaAs Nanostructures with Metal Assisted Chemical Etching," Nano Lett. 11, 5259 (2011).
- "Nonlithographic Patterning and Metal-Assisted Chemical Etching for Manufacturing of Tunable Light-Emitting Silicon Nanowire Arrays," *Nano Lett.* 10, 1582 (2010).
- "Nanoscale three dimensional pattern formation in light emitting porous silicon," Appl. Phys. Lett. 92, 191113 (2008).
- "In-plane Bandgap Control in Porous GaN through Electroless Wet Chemical Etching," Appl. Phys. Lett. 80, 980 (2002).
- "Metal-assisted chemical etching in HF/H₂O₂ produces porous silicon", X. Li and P.W. Bohn, *Appl. Phys. Lett.* 77, 2572 (2000); Cited for >850 times according to Google Scholar.

Patents on MacEtch from Illinois

http://mocvd.ece.illinois.edu

- Metal-assisted chemical etching porous silicon formation method (Patent number: 6,790,785, awarded 09/14/2004). Inventors: <u>Xiuling Li</u>, Paul W. Bohn, Jonathan V. Sweedler
- 2. Metal-assisted chemical etching to produce porous group III-V materials (Patent number: 6,762,134, awarded 07/13/2004). Inventors: Paul W. Bohn, <u>Xiuling Li</u>, Jonathan V. Sweedler, Ilesanmi Adesida
- Method of forming Nanoscale Three Dimensional Patterns in a Porous Material (Patent number: 8,586,843, awarded 07/16/2013). Inventors: <u>Xiuling Li</u>, David N. Ruzic, Ik Su Chun, Edmond K. C. Chow, Randolph E. Flauta
- Metal-assisted chemical etching to produce III-V semiconductor nanostructures (Patent number: 8,951,430, awarded 02/10/2015). Inventors: <u>Xiuling Li</u>, Matthew T. Dejarld, Jae Cheol Shin, Winston Chern
- Method of forming an array of high aspect ratio semiconductor nanostructures (Patent number: 8,980,656, awarded 03/17/2015). Inventors: <u>Xiuling Li</u>, Nicholas X. Fang, Placid M. Ferreira, Winston Chern, Ik Su Chun, Keng Hao Hsu
- Apparatus and Method for Magnetic-Field Guided Metal-Assisted Chemical Etching, (Patent number 9,704,951, awarded 7/11/2017). Inventors: Xiuling Li, Weidong Zhou, Wen Huang.
- 7. Self-anchored Catalyst Metal-assisted chemical Etching (Patent application number: 10,134,599, awarded 07/30/2018). Inventors: Xiuling Li, Jeongdong Kim, Lingyu Kong, Munho Kim.
- 8. Pending 1
- 9. Pending 2
- 10. Pending 3
- 11. Pending 4